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A two-dimensional time-dependent heat transport equation at the microscale is
derived. A second order finite difference scheme in both time and space is intro-
duced and the unconditional stability of the finite difference scheme is proved. A
computational procedure is designed to solve the discretized linear system at each
time step by using a preconditioned conjugate gradient method. Numerical results are
presented to validate the accuracy of the finite difference scheme and the efficiency
of the proposed computational procedure.c© 2001 Academic Press
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1. INTRODUCTION

Microtechnologies based on high-rate heating on thin film structures have developed
rapidly in recent years due to the advancement of short-pulse laser technologies and their ap-
plications to micromanufacturing processes [1, 3, 13]. These microtechnology applications
frequently deal with the thermal behavior of thin films [10]. Components of microelectronic
devices such as thin films of metals, and dielectrics such as SiO2 or Si semiconductors, can
be simulated using computers instead of actual prototyping. The demand for fast-switching
in electronic devices has precipitated the reduction of the device size to microscale. The
side effect of device size reduction is an increase in the heat-generation rate that leads to
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a higher thermal load on the microdevice. Studying the thermal behavior of thin films is
essential for predicting the performance of a microelectronic device or for designing the
desired microstructure.

The microscale heat transport equation arises from many applications, e.g., the phonon
electron interaction model [17], the single energy equation [21, 22], the phonon scattering
model [9], the phonon radiative transfer model [10], and the lagging behavior model [14,
20, 21].

Numerical solution of the one-dimensional microscale heat transport equation has been
considered by several authors. Qiu and Tien [16] used the Crank–Nicholson finite difference
scheme for solving the phonon electron interaction model. Joshi and Majumdar [10] solved
the phonon radiative transfer model in a one-dimensional medium by using the explicit
upstream differencing method.Özisik and Tzou [14] studied the lagging behavior by solving
the equation in a semiinfinite interval. Dai and Nassar [5] considered the numerical solution
of the microscale heat transport equation in a finite intervalx ∈ [0, ε], where the unit ofε is
in microscale. Recently, we employed a fourth order compact finite difference discretization
scheme to solve the one-dimensional microscale heat transport equation and we obtained a
highly accurate numerical solution [23].

In this paper, we generalize the microscale heat transport equation to two dimensions
and propose a set of numerical strategies to solve the governing equation efficiently. The
heat transport equations used to describe the thermal behavior of microstructures can be
expressed as

−∇ · Eq + Q = ρCp
∂T

∂t
,

(1)
Eq(x, y, t + τq) = −k∇T(x, y, t + τT ),

whereEq = (q1,q2) is the heat flux, and(q1,q2) are the heat flux components in thex and
y directions, respectively.T is the temperature,k is conductivity,ρ is density,Cp is the
specific heat, andQ is a heat source.τq andτT are positive constants which are the time lags
of the heat flux and temperature gradient, respectively. In the classical theory of diffusion,
the heat flux vector(Eq) and the temperature gradient(∇T) across a material volume are
assumed to occur at the same instant of time. They satisfy Fourier’s law of heat conduction:

Eq(x, y, t) = −k∇T(x, y, t). (2)

However, if the scale in one direction is at microscale, i. e., is of order 0.1µm, then the heat
flux and temperature gradient in this direction will occur at different times. The heat flux
and the temperature gradient in the microscale direction satisfy (1) instead of (2). This is the
so-called lagging effect [21]. Using Taylor series expansions, the first order approximation
of (1) can be written as

Eq + τq
∂ Eq
∂t
= −k

[
∇T + τT

∂

∂t
[∇T ]

]
. (3)

If we consider a film with width an order of 0.1µm and length an order of 1 mm, then the
component of the heat flux in thex direction satisfies the traditional Fourier law, while the
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component in they direction satisfies (1). Hence, we have

q1 = −k
∂T

∂x
, (4)

q2+ τq
∂q2

∂t
= −k

[
∂T

∂y
+ τT

∂

∂t

(
∂T

∂y

)]
. (5)

In two dimensions, Eq. (1) can be written as

−∂q2

∂y
= ρCp

∂T

∂t
+ ∂q1

∂x
− Q.

Substituting (4) into the above equation and simplifying, we obtain

∂q2

∂y
= −ρCp

∂T

∂t
+ k

∂2T

∂x2
+ Q. (6)

Differentiating (5) with respect toy yields

∂q2

∂y
+ τq

∂2q2

∂t∂y
= −k

[
∂2T

∂y2
+ τT

∂

∂t

(
∂2T

∂y2

)]
. (7)

Substituting (6) into (7) and after simplification, we obtain the following equation:

ρCp

(
∂T

∂t
+ τq

∂2T

∂t2

)
= k

∂

∂t

(
τq
∂2T

∂x2
+ τT

∂2T

∂y2

)
+ k

(
∂2T

∂x2
+ ∂

2T

∂y2

)
+
(

Q+ τq
∂Q

∂t

)
.

Denotingα = k/ρCp and S= (Q+ τq
∂Q
∂t )/k, we have the governing two-dimensional

microscale heat transport equation in the form of

1

α

∂T

∂t
+ τq

α

∂2T

∂t2
= τq

∂3T

∂t∂x2
+ τT

∂3T

∂t∂y2
+ ∂

2T

∂x2
+ ∂

2T

∂y2
+ S. (8)

The initial and boundary conditions are:

T(x, y, 0) = T0(x, y),
∂T

∂t
(x, y, 0) = T1(x, y),

T(0, y, t) = T2(y, t), T(L , y, t) = T3(y, t),

T(x, 0, t) = T4(x, t), T(x, ε, t) = T5(x, t).

The parametersα, τq, andτT in Eq. (8) have their physical domains of definition related to
certain material properties in microscale heat transfer. They are left as free parameters in our
study for more general testing of elliptic, hyperbolic, and parabolic cases, and for numerical
testing of our proposed discretization scheme and preconditioned iterative solution method.

The rest of the paper describes techniques that we propose to solve the microscale heat
transport equation (8). In particular, we introduce a finite difference scheme to discretize (8)
in Section 2. In Section 3, we prove the unconditional stability of the finite difference
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scheme with respect to initial values. A preconditioned conjugate gradient iterative method
is discussed in Section 4 to solve the sparse linear systems arising at each time step. In
Section 5 experimental results are presented to validate the proposed numerical techniques.
Concluding remarks are given in Section 6.

2. FINITE DIFFERENCE DISCRETIZATION

Dai and Nassar [5] comment that direct discretization of (8) leads to a finite difference
scheme that is three-level in time. In such a case, stability of the discretization scheme may
be difficult to ascertain. To avoid a three-level discretization scheme, following the idea of
Dai and Nassar, we introduce an auxiliary function as [5]

θ = T + τq
∂T

∂t
(9)

and change (8) into

1

α

∂θ

∂t
= ∂

∂t

(
τq
∂2T

∂x2
+ τT

∂2T

∂y2

)
+ ∂

2T

∂x2
+ ∂

2T

∂y2
+ S. (10)

The initial and boundary conditions can be reformulated as

T(x, y, 0) = T0, T(0, y, t) = T2, T(L , y, t) = T3, T(x, 0, t) = T4,

T(x, ε, t) = T5, θ(x, y, 0) = T0+ τqT1, θ(0, y, t) = T2+ τq
∂T2

∂t
,

θ(L , y, t) = T3+ τq
∂T3

∂t
, θ(x, 0, t) = T4+ τq

∂T4

∂t
, θ(x, ε, t) = T5+ τq

∂T5

∂t
.

Now consider a spatial domainÄ = [0, L] × [0, ε], whereε is at the microscale of order
0.1µm, andε ¿ L. Let Ä be discretized with uniform meshes with grid points atxi =
i1x, yj = j1y, i, j = 0, 1, . . . , N, whereN1x = L andN1y = ε. The number of grid
poits in thex andy directions could differ. For convenience we only consider the case in
which they are equal.

We denote the standard central difference operators as

δ2
xTi, j = Ti−1, j − 2Ti, j + Ti+1, j

1x2
and δ2

yTi, j = Ti, j−1− 2Ti, j + Ti, j+1

1y2
, (11)

which are of accuracy orderO(1x2) and O(1y2), respectively. Note that1x À 1y in
general.

We discretize (10) using a Crank–Nicholson type integrator with the central difference
operators (11) at the time step(n+ 1

2)1t given as

1

α1t

(
θn+1

i, j − θn
i, j

) = 1

1t

[(
τqδ

2
xTn+1

i, j + τTδ
2
yTn+1

i, j

)− (τqδ
2
xTn

i, j + τTδ
2
yTn

i, j

)]
+ 1

2

[(
δ2

xTn+1
i, j + δ2

yTn+1
i, j

)+ (δ2
xTn

i, j + δ2
yTn

i, j

)]+ S
n+ 1

2
i, j , (12)

where1t is the uniform time step size. This scheme obviously has an accuracy order of
O(1t2+1x2+1y2).
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Equation (9) can be discretized by a second order trapezoidal method with respect to
time t ,

1

2

(
θn+1

i, j + θn
i, j

) = 1

2

(
Tn+1

i, j + Tn
i, j

)+ τq

1t

(
Tn+1

i, j + Tn
i, j

)
, (13)

which can be solved forθn+1
i, j as

θn+1
i, j =

(
1+ 2τq

1t

)
Tn+1

i, j +
(

1− 2τq

1t

)
Tn

i, j − θn
i, j . (14)

Substituting (14) into (12) and after simplification, we have(
τq

1t
+ 1

2

)
δ2

xTn+1
i, j +

(
τT

1t
+ 1

2

)
δ2

yTn+1
i, j −

1

α1t

(
1+ 2τq

1t

)
Tn+1

i, j

= 1

α1t

[(
1− 2τq

1t

)
Tn

i, j − 2θn
i, j

]
+
(
τq

1t
− 1

2

)
δ2

xTn
i, j +

(
τT

1t
− 1

2

)
δyTn

i, j − S
n+ 1

2
i, j ,

(15)

which will be used to computeTn+1
i, j . Then the computedTn+1

i, j is substituted into (14) to
computeθn+1

i, j . The corresponding discretized initial and boundary conditions are given as

T0
i, j = (T0)i, j , Tn

0, j = (T2)
n
j , Tn

N, j = (T3)
n
j , Tn

i,0 = (T4)
n
i , Tn

i,N = (T5)
n
i , (16)

θ0
i, j = (T0+ τqT1)i, j , θn

0, j =
(

T2+ τq
∂T2

∂t

)n

j

, θn
N, j =

(
T3+ τq

∂T3

∂t

)n

j

, (17)

θn
i,0 =

(
T4+ τq

∂T4

∂t

)n

i

, θn
i,N =

(
T5+ τq

∂T5

∂t

)n

i

. (18)

3. STABILITY ANALYSIS

We shall prove the unconditional stability of the finite difference schemes (12) and (13)
with respect to the initial values. The technique that we will use in our proof is the discrete
energy method [4, 11]. To this end, we denote byG the set of discrete values{

un = {un
i, j

}
, with un

0, j = un
N, j = un

i,0 = un
i,N = 0; 1≤ i, j ≤ N

}
.

We then make the following norm definitions for anyun, vn ∈ G:

(un, vn) = 1x2
N−1∑
i, j=1

un
i, j v

n
i, j , ‖un‖2 = (un, un).

The following results can be verified easily [4, 11].

LEMMA 3.1. For any un, vn ∈ G, the equalities(
δ2

xun, vn
) = −(δxun, δxv

n),
(
δ2

yun, vn
) = −(δyun, δyv

n)
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hold, where

δxun
i, j =

un
i+1, j − un

i, j

1x
, δyun

i, j =
un

i, j+1− un
i, j

1y

are the forward difference operators.

THEOREM 3.2. Suppose that{Tn
i, j , θ

n
i, j } and {Vn

i, j , ξ
n
i, j } are the solutions of the finite

difference schemes(12)and(13)which satisfy the boundary conditions(16)–(18),and have
different initial values{T0

i, j , θ
0
i, j } and{V0

i, j , ξ
0
i, j }, respectively. Letwn

i, j = θn
i, j − ξn

i, j , ε
n
i, j =

Tn
i, j − Vn

i, j , then{wn
i, j , ε

n
i, j } satisfy

1

α
‖wn‖2+ 2τq‖δxε

n‖2+ (τq + τT )‖δyε
n‖2

≤ 1

α
‖w0‖2+ 2τq‖δxε

0‖2+ (τq + τT )‖δyε
0‖2, (19)

for any 0≤ n1t ≤ tstop. This implies that the finite difference scheme is unconditionally
stable with respect to the initial values.

Proof: {Tn
i, j , θ

n
i, j } and {Vn

i, j , ξ
n
i, j } are both solutions of (12) with the same boundary

conditions, so{wn, εn} ∈ G, and they also satisfy

1

α1t

(
wn+1

i, j − wn
i, j

) = 1

1t

(
τqδ

2
xε

n+1
i, j + τTδ

2
yε

n+1
i, j − τqδ

2
xε

n
i, j − τTδ

2
yε

n
i, j

)
+ 1

2

(
δ2

xε
n+1
i, j + δ2

yε
n+1
i, j + δ2

xε
n
i, j + δ2

yε
n
i, j

)
= 1

2
δ2

x

(
εn+1

i, j + εn
i, j

)+ 1

2
δ2

y

(
εn+1

i, j + εn
i, j

)
+ τq

1t
δ2

x

(
εn+1

i, j − εn
i, j

)+ τT

1t
δ2

y

(
εn+1

i, j − εn
i, j

)
. (20)

From (13), we have

wn+1
i, j + wn

i, j =
(
εn+1

i, j + εn
i, j

)+ 2τq

1t

(
εn+1

i, j + εn
i, j

)
. (21)

We can easily get the following results by using (21) and the definitions:

(εn+1+ εn, wn+1+ wn) = ‖εn+1+ εn‖2+ 2τq

1t
(‖εn+1‖2− ‖εn‖2), (22)

(εn+1− εn, wn+1+ wn) = 2τq

1t
(‖εn+1− εn‖2)+ ‖εn+1‖2− ‖εn‖2, (23)

and

(δx(ε
n+1+ εn), δx(w

n+1+ wn)) = ‖δx(ε
n+1+ εn)‖2+ 2τq

1t
(‖δxε

n+1‖2− ‖δxε
n‖2),

(24)
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(δx(ε
n+1− εn), δx(w

n+1+ wn)) = 2τq

1t
‖δx(ε

n+1− εn)‖2+ ‖δxε
n+1‖2− ‖δxε

n‖2, (25)

(δy(ε
n+1+ εn), δy(w

n+1+ wn)) = ‖δy(ε
n+1+ εn)‖2+ 2τq

1t
(‖δyε

n+1‖2− ‖δyε
n‖2),

(26)

(δy(ε
n+1− εn), δy(w

n+1+ wn)) = 2τq

1t
‖δy(ε

n+1− εn)‖2+ ‖δyε
n+1‖2− ‖δyε

n‖2. (27)

We now multiply both sides of (20) by(wn+1
i, j + wn

i, j )1x2 and sum overi and j to get

1

α1t
(‖wn+1‖2− ‖wn‖2)

= 1

2

(
δ2

x(ε
n+1+ εn), wn+1+ wn

)+ 1

2

(
δ2

y(ε
n+1+ εn), wn+1+ wn

)
+ τq

1t

(
δ2

x(ε
n+1− εn), wn+1+ wn

)+ τT

1t

(
δ2

y(ε
n+1− εn), wn+1+ wn

)
. (28)

We estimate each term on the right-hand side of (28). Using Lemma 3.1 and (24), we can
get

1

2

(
δ2

x(ε
n+1+ εn), wn+1+ wn

)
= −1

2
(δx(ε

n+1+ εn), δx(w
n+1+ wn))

= −1

2

[
‖δx(ε

n+1+ εn)‖2+ 2τq

1t
(‖δxε

n+1‖2− ‖δxε
n‖2)
]
. (29)

Similarly, using Lemma 3.1 and (26), we have

1

2

(
δ2

y(ε
n+1+ εn), wn+1+ wn

)
= −1

2

[
‖δy(ε

n+1+ εn)‖2+ 2τq

1t
(‖δyε

n+1‖2− ‖δyε‖2)
]
. (30)

Using (25) and (27), we can get the following results for the other two terms on the right-hand
side of (28):

τq

1t

(
δ2

x(ε
n+1− εn), wn+1+ wn

)
= − τq

1t

(
2τq

1t
‖δx(ε

n+1− εn)‖2+ ‖δxε
n+1‖2− ‖δxε‖2

)
. (31)

τT

1t

(
δ2

y(ε
n+1− εn), wn+1+ wn

)
= − τT

1t

(
2τq

1t
‖δy(ε

n+1− εn)‖2+ ‖δyε
n+1‖2− ‖δyε

n‖2
)
. (32)
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Substituting (29), (30), (31), and (32) back into (28), we have

1

α1t
(‖wn+1‖2− ‖wn‖2) = −1

2

[
‖δx(ε

n+1+ εn)‖2+ 2τq

1t
(‖δxε

n+1‖2− ‖δxε
n‖2)

]
− 1

2

[
‖δy(ε

n+1+ εn)‖2+ 2τq

1t
(‖δyε

n+1‖2− ‖δyε‖2)
]

− τq

1t

(
2τq

1t
‖δx(ε

n+1− εn)‖2+ ‖δxε
n+1‖2− ‖δxε‖2

)
− τT

1t

(
2τq

1t
‖δy(ε

n+1− εn)‖2+ ‖δyε
n+1‖2− ‖δyε

n‖2
)
. (33)

Simply dropping the four negative terms from the right-hand side of (33) yields

1

α1t
(‖wn+1‖2− ‖wn‖2)

≤ −2τq

1t
‖δxε

n+1‖2− τq + τT

1t
‖δyε

n+1‖2+ 2τq

1t
‖δxε

n‖2+ τq + τT

1t
‖δyε

n‖2,

which is

1

α
‖wn+1‖2+ 2τq‖δxε

n+1‖2+ (τq + τT )‖δyε
n+1‖2

≤ 1

α
‖wn‖2+ 2τq‖δxε

n‖2+ (τq + τT )‖δyε
n‖2. (34)

Equation (19) follows from (34) by recursion with respect ton.

4. SOLUTION STRATEGIES

In order to compute the solution of (15) a pentadiagonal matrix needs to be solved at
each time step. The solution of this linear system dominates the total simulation cost.
Direct solution methods are not usually practical for large values ofN due to the excessive
memory and computational requirements. A common sparse matrix solution strategy in the
field of engineering is to use either a direct band solver or an alternating direction implicit
(ADI) solution scheme [15] to compute the solution at each time step. We propose to use a
preconditioned iterative method to solve the sparse linear systems.

Let us multiply both sides of (15) by−1 and rewrite it in a simplified (standard) form

aTn+1
i, j + b

(
Tn+1

i−1, j + Tn+1
i+1, j

)+ c
(
Tn+1

i, j−1+ Tn+1
i, j+1

) = Fn
i, j , (35)

where the coefficients and the right-hand side are

b = − 1

1x2

(
τq

1t
+ 1

2

)
,

c = − 1

1y2

(
τT

1t
+ 1

2

)
,
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a = 2

1x2

(
τq

1t
+ 1

2

)
+ 2

1y2

(
τT

1t
+ 1

2

)
+ 1

α1t

(
1+ 2τq

1t

)
= 1

α1t

(
1+ 2τq

1t

)
− 2(b+ c),

and

Fn
i, j =

[
2

1x2

(
τq

1t
− 1

2

)
+ 2

1y2

(
τT

1t
− 1

2

)
− 1

α1t

(
1− 2τq

1t

)]
Tn

i, j

− 1

1x2

(
τq

1t
− 1

2

)(
Tn

i−1, j + Tn
i+1, j

)− 1

1y2

(
τT

1t
− 1

2

)(
Tn

i, j−1+ Tn
i, j+1

)
+ 2

α1t
θn

i, j + S
n+ 1

2
i, j . (36)

Hence, the system of linear equations (35) is symmetric and strictly diagonally dominant.
Let us further scale (35) witha and assemble the linear system of equations as

AT = F, (37)

whereA is the coefficient matrix with 5 diagonals (a unit main diagonal),T is the solution
vector, andF is the right-hand side vector. SinceA is a Stieltjes matrix (symmetric positive
definite M-matrix), we should expect a fast convergence rate for most iterative methods
used to solve (37). A particularly important iterative method for solving symmetric positive
definite linear systems is the conjugate gradient method [8]. To accelerate the convergence
rate of the conjugate gradient (CG) method, a preconditionerM is usually applied to (37)
to transform it into a more favorable form:

M−1AT = M−1F. (38)

The key issue in many such computations is to find a good preconditionerM, which should be
inexpensive to compute and should allow easy realization of a solution. The preconditioned
conjugate gradient method is usually abbreviated PCG.

As noted above, the linear system (37) is not difficult to solve for most iterative methods.
The important issue that interests us is how to solve it most efficiently in a time-dependent
situation, e.g., in the microscale heat transport simulation. Note that (37) needs to be solved
at each time step with the same coefficient matrixA and a different right-hand sideF. Thus
an iterative method that converges slowly will not be suitable. A direct method that does not
have much fill-in would be much more appealing. A compromise is to use a fast iterative
method coupled with a very accurate and robust preconditioner so that (37) can be solved
in a few iterations at each time step.

We implemented one of the simplest preconditioners based on the incomplete Cholesky
(IC) factorization ofA. SoM is constructed with a Cholesky factorization ofA, but only the
entries corresponding to the nonzero positions ofA are computed and stored [12]. Hence,M
is as sparse asAand contains five diagonals. This simple IC preconditioner works so well for
the current problem that we consider the implementation of other powerful preconditioning
strategies unwarranted [18, 19].
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The IC algorithm we used is a generic IC procedure for general sparse matrices taken
from [7]. For reference convenience, it is reproduced in Algorithm 4.1, where we use the
notationsM = (mi, j ) andA = (ai, j ).

ALGORITHM 4.1. Procedure for incomplete Cholesky factorization

1. m1,1 = √a1,1.
2. Fori = 2 ton
3. Forj = 1 to i − 1
4. If ai, j = 0 thenmi, j = 0 else
5. mi, j = (ai, j −

∑ j−1
k=1 mi,kmj,k)/mj, j

6. mi,i =
√

ai,i −
∑i−1

k=1 m2
i,k.

SinceA is a Stieltjes matrix, Algorithm 4.1 is guaranteed to finish [12]. Algorithm 4.1
actually computes a lower triangular matrixML . The preconditioner is then taken asM =
ML MT

L . For the current problem with a matrix of five diagonals, it is possible to have a more
efficient implementation of PCG using the ideas of Eisenstat [6]. Since we are interested in
using our code in more general situations, the Eisenstat implementation is not adopted.

Remarks. There are some aspects of implementing a preconditioned CG method that
should be considered.

• Initial guess: at each time step(n+ 1)1t , the initial guess ofTn+1
i, j for the PCG iteration

is taken as the solution of the previous time stepTn
i, j . This is especially important when

n is large andTn+1
i, j is approaching steady state, since in the case of larget (and largen),

maxi, j |Tn+1
i, j − Tn

i, j | is small.
• Stopping criterion and tolerance: an iteration scheme may have various stopping tol-

erances to terminate, corresponding to various stopping criteria. The one most commonly
used is a measure of the reduction rate of the residual in a certain norm, relative to the initial
residual norm. Such relative tolerances may not take advantage of a good initial guess, as
in the current case, if the stopping criterion is too strict. On the other hand, an overly liberal
stopping criterion may result in an approximate solution that is not fully converged to the
truncation accuracy. In out tests, the two-norm residual reduction rate of 107 was set. A
stricter stopping tolerance could not decrease the error.
• Scaling matrix: the coefficient matrix may have very large entries due to the appearance

of 1x2 and1y2 in the denominators of the representations ofa, b, c, andF N
i, j . Since the

y direction is at the microscale, 1/1y2 can be quite large. It can produce very large values
for the coefficientsa, c, and for the right-hand sideFn

i, j . We failed to construct the IC
preconditioner using the 32-bit arithmetic computation with large values ofN, due to the
overflow of data representation. This problem was not present when the 64-bit arithmetic
computation was implemented. However, it is preferable to scale the linear system (the
coefficient matrix and the right-hand side) by a factor1x21y2 so that all computation of
coefficients and the right-hand side is performed with moderate size numbers. After they
are computed, each equation is then scaled bya to make the main diagonal unit.
• Ordering of unknowns: it is known that the ordering of the unknowns can affect the

convergence rate of the PCG method with stationary iterative methods as preconditioners.
We expect that the ordering of the unknowns may affect our implementation since|c| is
usually much larger than|b|. In fact, if they axis is at the microscale, the natural (lexico-
graphical) ordering will order the grid points following thex direction first, which is the
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strong direction. Studies on ordering effect on PCG preconditioned by stationary iterative
methods in solving convection diffusion equations show that the ordering following the
strong direction favors PCG convergence [2]. However, the ordering effect did not appear
in our numerical tests, partly because the PCG method (preconditioned by IC) converges
too fast to allow any significant convergence difference to be noticed.
The entire simulation process is formulated in Algrithm 4.2.

ALGORITHM 4.2. Simulation procedure for microscale heat transport equation

1. Given initial and boundary conditions,1t,1x,1y, and timetstop

2. ComputeT0 andθ0

3. Compute coefficientsa, b, c, and construct theIC preconditionerM
4. Forn = 0, 1, . . . , tstop/1t, do
5. ComputeFn from (36)
6. SolveATn+1 = Fn using thePCGmethod
7. Computeθn+1 from (14)
8. End do.

5. NUMERICAL VALIDATIONS

Numerical experiments were conducted to validate the proposed discretization scheme
and the iterative solution method. A model problem was constructed by settingα = 1,
τq = 1

π2 + 102, andτT = 1
π2 + 10−6, on a rectangular domain 0≤ x ≤ 1, 0≤ y ≤ 10−4.

The boundary and initial conditions were set to satisfy the exact solution as

T(x, y, t) = e−π
2t sin(πx) sin(104πy).

As mentioned previously, the PCG iteration was terminated when the two-norm residual
was reduced by a factor of 107. The errors reported were the maximum absolute errors
between the approximate solution and the exact solution as maxi, j |Ti, j − Tn+1

i, j | at t = tstop.
The code was written in standard Fortran 77 programming language and was run on an SGI
Power Challenge workstation using 64-bit arithmetic.

We first computed a few simulations using various values ofN and1t for tstop= 1. The
maximum absolute errors of the simulations are listed in Table I. We find that, in all cases,
the errors are very small but do not decrease when the spatial mesh is refined. (The slight
increase of errors whenN is large was likely caused by rounding errors.) These results are
very interesting. In all tests, there was no oscillatory solution computed for any of the various
choices of1t ,1x2, and1y2. This verifies the unconditional stability of the proposed finite
difference scheme.

We also did experiments using different numbers of grid points in thex andy directions.
In particular, we usedNx = 2Ny in our tests and repeated the tests done for Table I. The
maximum absolute errors observed were almost the same as those reported in Table I, due
to the fact that the spatial mesh grid does not affect the final accuracy significantly for this
test problem.

In order to understand why the finite difference scheme is insensitive to refinement of
the spatial mesh grid, we plotted in Fig. 1 the maximum absolute errors at each time
stept with N = 101 andN = 201. We see that, although the maximum absolute errors
for both N = 101 andN = 201 tend to become very small ast elapses, the maximum
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TABLE I

Maximum Absolute Errors in the Computed Solution with Various N and ∆ta

1t/N 11 21 51 81 101 151 201

0.01 4.00(−7) 4.06(−7) 4.08(−7) 4.08(−7) 4.08(−7) 4.08(−7) 4.08(−7)
0.005 9.65(−8) 9.79(−8) 9.83(−8) 9.84(−8) 9.84(−8) 9.84(−8) 9.84(−8)
0.001 8.44(−10) 8.82(−10) 8.93(−10) 8.95(−10) 8.96(−10) 8.96(−10) 8.96(−10)

a(L = 1, ε = 10−4.)

absolute errors are smaller withN = 201 than withN = 101 whent is not very large.
However, the error difference is only within the magnitude of 10−6 even for smallt. This
experiment demonstrates that finer spatial mesh does produce more accurate solutions.
Since the maximum absolute errors with all spatial meshes converge to zero as the exact
solution converges to zero whent is large, they do not differ very much for larget . This
explains the interesting but strange data shown in Table I.

In order to show the correctness of the finite difference scheme, we conducted another
set of experiments usingL = ε = 1. This choice does not reflect the microscale effect of
the test problem, but only shows that the finite difference scheme does react to the change
in spatial mesh. The results in Table II show that, in general, smaller maximum absolute
errors are obtained when the mesh is fine.

FIG. 1. Comparison of maximum absolute errors at each time stept for N = 101 andN = 201. (1t =
0.001, tstop= 1.0, L = 1, ε = 10−4.)
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TABLE II

Maximum Absolute Errors in the Computed Solution with Various N and ∆ta

1t/N 11 21 51 81 101 151 201

0.01 4.52(−3) 1.63(−3) 2.76(−4) 4.99(−7) 4.19(−7) 4.57(−7) 4.12(−7)
0.005 4.52(−3) 1.63(−3) 2.76(−4) 1.89(−7) 1.10(−7) 1.47(−7) 1.02(−7)
0.001 4.52(−3) 1.62(−3) 2.76(−4) 9.01(−8) 1.02(−8) 4.77(−8) 3.00(−9)

a(L = ε = 1.)

Figure 2 compares the (unpreconditioned) CG and PCG with respect to the number
of iterations (left panel) and the total CPU time in seconds (right panel), when different
spatial meshN was used. PCG takes many fewer iterations than CG to converge when
N is large. The CPU time for PCG is also smaller whenN is large. However, CG is
shown to be more efficient whenN < 151. This is because of the diagonal dominance
of the coefficient matrix. It makes most simple iterative methods converge fast without
any complicated implementation. However, for large linear systems (N ≥ 151), the fast
convergence of PCG does demonstrate the usefulness of the IC preconditioner. Note that
for this particular problem, the preconditioning overhead can be reduced by using the
Eisenstat implementation [6].

Figure 3 shows the numbers of iterations of CG and PCG at each time step withN = 201
and1t = 0.001. The number of iterations of PCG is fixed at 3 throughout the entire

FIG. 2. Comparison of iteration numbers and total CPU time in seconds between PCG and CG for solving
the test problem with variousN. (1t = 0.001, tstop= 1.0.)
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FIG. 3. Comparison of iteration numbers between PCG and CG for solving the linear systems (N = 201) at
each time stept . (1t = 0.001, tstop= 1.0.)

simulation. The number of iterations of CG increases, statistically, ast becomes large. We
can say that PCG is more robust than CG for solving large sparse linear systems.

6. CONCLUDING REMARKS

We have derived a two-dimensional governing microscale heat transport equation and
a few numerical techniques to solve the equation. We proposed a finite difference scheme
to discretize the governing equation. The finite difference scheme has been proved to be
unconditionally stable with respect to initial values. A preconditioned conjugate gradient
method is used to solve the resulting sparse linear systems. The computational procedure
proposed has been verified by the numerical experiments to be efficient and accurate.

REFERENCES

1. I. W. Byod,Laser Processing of Thin Films and Microstructures(Springer-Verlag, Berlin/New York, 1989).

2. M. P. Chernesky, On preconditioned Krylov subspace methods for discrete convection–diffusion problems,
Numer. Meth. Partial Differential Equations13, 321 (1997).

3. D. E. Chryssolouris,Laser Machining, Theory and Practice(Springer-Verlag, Berlin/New York, 1991).

4. W. Dai, An unconditionally stable three-level explicit difference scheme for the Schr¨odinger’s equation with
a variable coefficient,SIAM J. Numer. Anal.29, 174 (1992).

5. W. Dai and R. Nassar, A finite difference method for solving the heat transport equation at the microscale,
Numer. Meth. Partial Differential Equations15, 697 (1999).



2D MICROSCALE HEAT TRANSPORT EQUATION 275

6. S. C. Eisenstat, Efficient implementation of a class of preconditioned conjugate gradient methods,SIAM J.
Sci. Stat. Comput.2, 1 (1981).

7. G. H. Golub and J. M. Ortega,Scientific Computing: An Introduction with Parallel Computing(Academic
Press, Boston, 1993).

8. M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,J. Res. Natl. Bur.
Stan.49, 409 (1952).

9. D. D. Joseph and L. Preziosi, Heat waves,Rev. Modern Phys.61, 41 (1989).

10. A. A. Joshi and A. Majumdar, Transient ballistic and diffusive phonon heat transport in thin films,J. Appl.
Phys.74, 31 (1993).

11. M. Lees, Alternating direction and semi-explicit difference methods for parabolic partial differential equations,
Numer. Math.3, 398 (1961).

12. J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems of which the coefficient
matrix is a symmetric M-matrix,Math. Comp.31, 148 (1977).

13. J. Narayan, V. P. Godbole, and G. W. White, Laser method for synthesis and processing of continuous diamond
films on nondiamond substrates,Science52, 416 (1991).
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